Intermetallic alloys like e.g. Iron-Aluminides, Titanium-Aluminides or Molybdenum- Silizides are prospective materials for high-temperature applications. For additive manufacturing (AM) intermetallic structural materials are particularly challenging due to their high melting points, oxygen susceptibility and low temperature brittleness. The feasibility of manufacturing intermetallic Mo-Si-B alloys with the laser additive manufacturing process of direct energy deposition (DED) is demonstrated and recent results in characterizing rapidly solidified material with respect to correlations between process, composition and microstructures are presented. The possibility to dope the material with Yttrium oxide (Y2O3) for dispersion is successfully demonstrated. Current challenges, e.g. homogenous distribution of alloying elements and applicability are addressed.
Keywords:
Subject: Engineering - Automotive Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.