Preprint
Article

Stability and Stabilization of Ecosystem for Epidemic Virus Transmission Under Neumann Boundary Value Via Impulse Control

Altmetrics

Downloads

475

Views

425

Comments

0

This version is not peer-reviewed

Submitted:

06 February 2021

Posted:

08 February 2021

Read the latest preprint version here

Alerts
Abstract
In this paper, by using the variational method, a sufficient condition for the unique existence of the stationary solution of the reaction-diffusion ecosystem is obtained, which directly leads to the global asymptotic stability of the unique equilibrium point. Besides, employing impulse control technique derives the globally exponential stability criterion of delayed feedback ecosystem.And numerical examples illuminate the effectiveness of impulse control, which has a certain enlightening effect on the actual epidemic prevention work . That is, in the face of the epidemic situation, taking a certain frequency of positive and effective epidemic prevention measures is conducive to the stability and control of the epidemic situation. particularly, the newly-obtained theorems quantifies this feasible step.
Keywords: 
Subject: Computer Science and Mathematics  -   Algebra and Number Theory
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated