Preprint
Article

Increasing the Quality Factor (Q) of 1D Photonic Crystal Cavity with an End Loop-Mirror

Altmetrics

Downloads

632

Views

355

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

07 February 2021

Posted:

08 February 2021

You are already at the latest version

Alerts
Abstract
Increasing the quality factor (Q) of an optical resonator device has been a research focus to be utilized in various applications. Higher Q-factor means light is confined in a longer time which will produce a shaper peak and higher transmission. In this paper, we introduce a novel technique to increase further the Q-factor of a one-dimensional photonic crystal (1D PhC) cavity device by using an end loop-mirror (ELM). The technique utilizes and recycles the light transmission from the conventional 1D PhC cavity design. The design has been proved to work by using the 2.5D FDTD simulation with Lumerical FDTD and MODE softwares. By using the ELM technique, the Q- factor of a 1D PhC design has been shown to have increased up to 79.53 % from the initial Q value without the ELM. This novel design technique can be combined with any high Q-factor and very high Q-factor designs to increase more the Q-factor value of a photonic crystal cavity devices or any other suitable optical resonator devices. The experimental result shows that the device is measurable by adding a Y-branch component to the one-port structure and able to get the high-Q result.
Keywords: 
Subject: Physical Sciences  -   Acoustics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated