Preprint
Article

Ghost Beam Suppression in Deep Frequency Modulation Interferometry for Compact on-Axis Optical Heads

Altmetrics

Downloads

247

Views

421

Comments

1

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

04 March 2021

Posted:

05 March 2021

You are already at the latest version

Alerts
Abstract
We present a compact optical head design for wide-range and low noise displacement sensing using deep frequency modulation interferometry. The on-axis beam topology is realised in a quasi-monolithic component and relies on cube beamsplitters and beam transmission through perpendicular surfaces to keep angular alignment constant when operating in air or vacuum, which leads to the generation of ghost beams that can limit the phase readout linearity. We investigate the coupling of these beams into the non-linear phase readout scheme of DFMI and demonstrate adjustments of the phase estimation algorithm to reduce this effect. This is done through a combination of balanced detection and the inherent orthogonality of beat signals with different relative time-delays in deep frequency modulation interferometry that is a unique feature not available for heterodyne, quadrature or homodyne interferometry.
Keywords: 
Subject: Physical Sciences  -   Acoustics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated