This paper presents ensemble learning of multi-source satellite sensors dataset to obtain better predictive performance of the forest biomass. Spectral, spectral-indices, and spectral-textural features were generated from two optical satellite sensors, Landsat 8 Operational Land Imager (OLI) and Sentinel-2 Multispectral Instrument (MSI). In addition, two radar satellite sensors, Sentinel-1 C-band Synthetic Aperture Radar (CSAR), and Advanced Land Observing Satellite (ALOS-2) Phased Array type L-band Synthetic Aperture Radar (PALSAR-2) were utilized to generate backscattering and backscattering-textural features. The plot-wise above ground biomass data available from five forests in New England region were utilized. Ensemble learning of multi-source satellite sensors dataset was carried out by employing four machine learning regressors namely, Support Vector Machines (SVM), Random Forests (RF), Gradient Boosting (GB), and Multilayer Perceptron (MLP). A five-fold cross-validation method was used to evaluate predictive performance of the multi-source satellite sensors. The integration of multi-source satellite features, comprising of spectral, spectral-indices, backscattering, spectral-textural, and backscattering-textural information, through ensemble learning and cross-validation approach implemented in the research showed promising results (R2 = 0.81, RMSE = 46.2 Mg/ha) for the estimation of plots-level forest biomass in New England region.
Keywords:
Subject: Environmental and Earth Sciences - Remote Sensing
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.