Phenotypic Characteristics of Strawberry related to Photo-physiological Parameters according to Temperature and Relative Humidity in a Greenhouse after Planting
The low relative humidity (RH) levels in a greenhouse during the daytime in a strawberry (Fragaria × ananassa Duch) cultivation period negatively affect the growth of strawberry related to photo-physiology. Therefore, this study was conducted to confirm an efficient RH management method by analyzing the phenotypic characteristics related to photo-physiology by controlling the RH in a greenhouse during the daytime with a fog system. Strawberry plants were grown respectively in a greenhouse affected by natural RH changes (control) and in a greenhouse with 40% ~ 50% RH adjusted during the daytime using a fog system. In the greenhouse, with controlled RH, the temperature decreased, and the RH was higher in the initial growth stage of strawberry planting than the control. It was observed a significant increase in the survival rate of the strawberry plant, as well as the incidence of powdery mildew, was lowered. In addition, the photosynthetic rate and OJIP chlorophyll a fluorescence transients related to photosystem II efficiency of strawberry leaves were significantly higher in the fog treatment than in the control. In winter, during the day, the number of days on which the temperature dropped below 20℃ has increased, the greenhouse temperature with controlled RH was lower due to the fog system. When the yield per strawberry plant in January and February was investigated, the control was higher than the RH treatment. Therefore, RH management using a fog system must be controlled at a level where a temperature range is adequate for plant growth, in which the efficient control of these parameters increases strawberry productivity.
Keywords:
Subject: Biology and Life Sciences - Agricultural Science and Agronomy
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.