Preprint
Article

Predicting Alcohol Concentration during Beer Fermentation Using Ultrasonic Measurements and Machine Learning

Altmetrics

Downloads

437

Views

413

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

16 February 2021

Posted:

18 February 2021

You are already at the latest version

Alerts
Abstract
Beer fermentation is typically monitored by periodic sampling and off-line analysis. In-line sensors would remove the need for time-consuming manual operation and provide real-time evaluation of the fermenting media. This work uses a low-cost ultrasonic sensor combined with machine learning to predict the alcohol concentration during beer fermentation. The highest accuracy model (R2=0.952, MAE=0.265, MSE=0.136) used a transmission-based ultrasonic sensing technique along with the measured temperature. However, the second most accurate model (R2=0.948, MAE=0.283, MSE=0.146) used a reflection-based technique without the temperature. Both the reflection-based technique and the omission of the temperature data are novel to this research and demonstrate the potential for a non-invasive sensor to monitor beer fermentation.
Keywords: 
Subject: Engineering  -   Automotive Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated