In this paper, we focus on variational Bayesian learning deterministic optimization methods for inference in biparametric exponential models where the parameters follow semiparametric regression structures. This combination of data models and algorithms contributes to solving real-world problems and reduces the computation time. This allows both the rapid exploration of many data models and the accurate estimation of the mean and variance functions through the connection between generalized linear models and graph theory.
A simulation study was carried out to assess the performance of the deterministic approximation. Finally, herein, we present an application using macroeconomic data to emphasize the benefits of the proposed approach.
Keywords:
Subject: Computer Science and Mathematics - Probability and Statistics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.