We report enhanced nonlinear optics in complementary metal-oxide-semiconductor (CMOS) compatible photonic platforms through the use of layered two-dimensional (2D) graphene oxide (GO) films. We integrate GO films with silicon-on-insulator nanowires (SOI), high index doped silica glass (Hydex) and silicon nitride (SiN) waveguides and ring resonators, to demonstrate an enhanced optical nonlinearity including Kerr nonlinearity and four-wave mixing (FWM). The GO films are integrated using a large-area, transfer-free, layer-by-layer method while the film placement and size are controlled by photolithography. In SOI nanowires we observe a dramatic enhancement in both the Kerr nonlinearity and nonlinear figure of merit (FOM) due to the highly nonlinear GO films. Self-phase modulation (SPM) measurements show significant spectral broadening enhancement for SOI nanowires coated with patterned films of GO. The dependence of GO’s Kerr nonlinearity on layer number and pulse energy shows trends of the layered GO films from 2D to quasi bulk-like behavior. The nonlinear parameter of GO coated SOI nanowires is increased 16 folds, with the nonlinear FOM increasing over 20 times to FOM > 5. We also observe an improved FWM efficiency in SiN waveguides integrated with 2D layered GO films. FWM measurements for samples with different numbers of GO layers and at different pump powers are performed, achieving up to ≈7.3 dB conversion efficiency (CE) enhancement for a uniformly coated device with 1 layer of GO and ≈9.1 dB for a patterned device with 5 layers of GO. These results reveal the strong potential of GO films to improve the nonlinear optics of silicon, Hydex and SiN photonic devices.
Keywords:
Subject: Physical Sciences - Optics and Photonics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.