Preprint
Article

Proposition of a Novel Strategy for Creation of Entirely New Proteins

Altmetrics

Downloads

227

Views

322

Comments

0

This version is not peer-reviewed

Submitted:

27 February 2021

Posted:

01 March 2021

You are already at the latest version

Alerts
Abstract
Proteins having a variety of functions play many essential roles in maintaining various life activities in organisms. Various methods, by which new protein functions can be artificially produced, have progressed rapidly upon development in recombinant DNA technology and effective screening techniques. However, the obtainable scope of the new functions has been restricted in a narrow range, because only functions of presently existing proteins can be used. On the other hand, it has been considered that it would be impossible to create an entirely new protein, which does not show any meaningful homology with any other amino acid sequences of previously existing proteins. The reason is because one amino acid sequence for a protein cannot be selected out from an extraordinary large amino acid sequence diversity as ~10130. As a matter of course, it is impossible to design an amino acid sequence of a protein in advance and a gene encoding the protein cannot be also formed through random process. Nevertheless, extant organisms have generated a variety of entirely new proteins in some way to make full use of them. This means that extant organisms have equipped a mechanism with which entirely new proteins can be produced under the present core life system composed of protein, tRNA (genetic code) and gene. In this article, first I introduce the mechanism, with which entirely new proteins are created in extant organisms, and further propose a novel strategy for application of the mechanism to protein engineering through creation of entirely new proteins, which could contribute to development of various industries.
Keywords: 
Subject: Biology and Life Sciences  -   Biochemistry and Molecular Biology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated