You are currently viewing a beta version of our website. If you spot anything unusual, kindly let us know.

Preprint
Communication

Optimization of the ZnO ALD Coating of a Photonic Microsphere-Based Temperature Sensor

Altmetrics

Downloads

253

Views

276

Comments

0

Submitted:

26 February 2021

Posted:

01 March 2021

You are already at the latest version

Alerts
Abstract
This study presents of the microsphere-based fiber-optic sensor with the ZnO ALD coating thickness of 100 nm and 200 nm for temperature measurements. Metrological properties of the sensor were investigated over the temperature range of 100°C to 300°C, with a 10°C step. The interferometric signal is used to control whether the microstructure is intact. Spectrum shift of a reflected signal is used to conclude changes in measured parameter for the sensor with a 100 nm coating, while the reflected signal intensity is an indicator during measurements executed by a sensor with a 200 nm coating. With changing temperature, the peak position or intensity of a reflected signal also changes. The R2 coefficient of the presented sensors indicates a linear fit of over 0.99 to the obtained data. The sensitivity of the sensors, investigated in this study, equals 103.5 nW/°C and 0.019 nm/°C for ZnO thickness of 200 nm and 100 nm, respectively.
Keywords: 
Subject: Engineering  -   Automotive Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated