Preprint
Article

Time Wavelength Interleaving Perceptron at 12 Giga-Ops/s with a Kerr Soliton Crystal Microcomb for Optical Neural Networks

Altmetrics

Downloads

286

Views

299

Comments

0

This version is not peer-reviewed

Submitted:

27 February 2021

Posted:

01 March 2021

You are already at the latest version

Alerts
Abstract
Optical artificial neural networks (ONNs) have significant potential for ultra-high computing speed and energy efficiency. We report a novel approach to ONNs that uses integrated Kerr optical micro-combs. This approach is programmable and scalable and is capable of reaching ultra-high speeds. We demonstrate the basic building block ONNs — a single neuron perceptron — by mapping synapses onto 49 wavelengths to achieve an operating speed of 11.9 x 109 operations per second, or Giga-OPS, at 8 bits per operation, which equates to 95.2 gigabits/s (Gbps). We test the perceptron on handwritten-digit recognition and cancer-cell detection — achieving over 90% and 85% accuracy, respectively. By scaling the perceptron to a deep learning network using off-the-shelf telecom technology we can achieve high throughput operation for matrix multiplication for real-time massive data processing.
Keywords: 
Subject: Engineering  -   Automotive Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated