Preprint
Essay

Mechanism of the Effect of High-Intensity Training on Urinary Metabolism in Female Water Polo Players Based on UHPLC-MS Non-Targeted Metabolomics Technique

Altmetrics

Downloads

186

Views

271

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

27 February 2021

Posted:

02 March 2021

You are already at the latest version

Alerts
Abstract
Objective: To study the changes in urine metabolism in female water polo players before and after high-intensity training by using ultra-high performance liquid chromatography-mass spectrometry, and to explore the biometabolic characteristics of urine after training and competition. Methods: Twelve young female water polo players (except goalkeepers) from Shanxi Province were selected. A 4-week formal training was started after one week of acclimatization according to experimental requirements. Urine samples (5 ml) were collected before formal training, early morning after 4 weeks of training, and immediately after 4 weeks of training matches, and labeled as T1, T2, and T3, respectively. The samples were tested by LC-MS after pre-treatment. XCMS, SIMCA-P 14.1, and SPSS16.0 were used to process the data and identify differential metabolites. Results: On comparing the immediate post-competition period with the pre-training period (T3 vs T1), 24 differential metabolites involved in 16 metabolic pathways were identified, among which niacin and niacinamide metabolism and purine metabolism were potential post-competition urinary metabolic pathways in the untrained state of the athletes. On comparing the immediate post-competition period with the post-training period (T3 vs T2), 10 metabolites involved in 3 metabolic pathways were identified, among which niacin and niacinamide metabolism was a potential target urinary metabolic pathway for the athletes after training. Niacinamide, 1-methylnicotinamide, 2-pyridone, L-Gln, AMP, and Hx were involved in two metabolic pathways before and after the training. Conclusion: Differential changes in urine after water polo games are due changes in the metabolic pathways of niacin and niacinamide.
Keywords: 
Subject: Biology and Life Sciences  -   Biochemistry and Molecular Biology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated