Preprint
Review

The ‘Jekyll and Hyde’ of Gluconeogenesis: Early-Life Adversity, Later Life Stress, and Metabolic Disturbances

Altmetrics

Downloads

301

Views

467

Comments

1

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

19 March 2021

Posted:

23 March 2021

You are already at the latest version

Alerts
Abstract
The physiological response to a psychological stressor broadly impacts energy metabolism. In-versely, changes in energy availability affect the physiological response to the stressor in terms of hypothalamus, pituitary adrenal axis (HPA) and sympathetic nervous system activation. Glu-cocorticoids, the endpoint of the HPA axis, are critical checkpoints in endocrine control of ener-gy homeostasis and have been linked to metabolic diseases including obesity, insulin resistance and type 2 diabetes. Glucocorticoids, through the glucocorticoid receptor, activate transcription of genes associated with glucose and lipid regulatory pathways and thereby control both physi-ological and pathophysiological systemic energy homeostasis. Here, we summarize the current knowledge of glucocorticoid functions in energy metabolism and systemic metabolic dysfunc-tion, particularly focusing on glucose and lipid metabolism. There are elements in the external environment that induce lifelong changes in the HPA axis stress response and glucocorticoid levels, the most prominent are early-life adversity, or exposure to traumatic stress. We hypothe-sise that when the HPA axis is so disturbed after early-life adversity, it will fundamentally alter hepatic gluconeogenesis, inducing hyperglycaemia, and hence crystalise the significant lifelong risk of developing either the metabolic syndrome, or type 2 diabetes. This gives a “Jekyll and Hyde” role to gluconeogenesis, providing the necessary energy in situations of acute stress, but driving towards pathophysiological consequences when the HPA axis has been altered.
Keywords: 
Subject: Biology and Life Sciences  -   Biochemistry and Molecular Biology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated