Preprint
Article

A Statistical Inference of the Principle of Maximum Entropy Production

Altmetrics

Downloads

344

Views

504

Comments

0

This version is not peer-reviewed

Submitted:

28 February 2021

Posted:

02 March 2021

You are already at the latest version

Alerts
Abstract
The maximization of entropy S within a closed system is accepted as an inevitability (as the second law of thermodynamics) by statistical inference alone. The Maximum Entropy Production Principle (MEPP) states that not only S maximizes, but $\dot{S}$ as well: a system will dissipate as fast as possible. There is still no consensus on the general validity of this MEPP, even though it shows remarkable explanatory power (both qualitatively and quantitatively), and has been empirically demonstrated for many domains. In this theoretical paper I provide a generalization of entropy gradients, to show that the MEPP actually follows from the same statistical inference, as that of the 2nd law of thermodynamics. For this generalization I only use the concepts of super-statespaces and microstate-density. These concepts also allow for the abstraction of 'Self Organizing Criticality' to a bifurcating local difference in this density, and allow for a generalization of the fundamentally unresolved concepts of 'chaos' and 'order'.
Keywords: 
Subject: Physical Sciences  -   Acoustics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated