Preprint
Article

Marker Assisted Selection of Malic-Consuming Saccharomyces cerevisiae Strains for Winemaking. Efficiency and Limits of a QTL’s Driven Breeding Program

Altmetrics

Downloads

217

Views

291

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

02 March 2021

Posted:

03 March 2021

You are already at the latest version

Alerts
Abstract
Background Natural Saccharomyces cerevisiae yeast strains exhibit very large genotypic and phe-notypic diversity. Breeding programs taking advantage of this characteristic, are widely used for yeast selection in the wine industry, especially in the recent years when winemakers need to adapt their production to climate change. The aim of this work was to evaluate a Marker Assisted Se-lection (MAS) program to improve malic acid consumption capacity of Saccharomyces cerevisiae in grape juice. Methods Optimal individuals of two unrelated F1-hybrids were crossed to get a new genetic background carrying many “malic consumer” loci. Then, eleven QTLs already identified were used for implementing the MAS breeding program. Results By this way, extreme individuals able to consume more than 70% of malic acid in grape juice were selected. These individuals were tested in different enological matrixes and compared to their original parental strains. They greatly reduced the malic acid content at the end of alcoholic fermentations, they appeared to be robust to the environment and accelerate the ongoing of malo-lactic fermentations by Oenococcus oeni. Conclusions This study illustrates how MAS can be efficiently used for selecting industrial Saccharomyces cerevisiae strains with outlier properties for winemaking.
Keywords: 
Subject: Biology and Life Sciences  -   Biochemistry and Molecular Biology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated