Preprint
Article

An Artificial Neural Network Approach to Predict the Future Land Use Land Cover of Great Malang Region, Indonesia

Altmetrics

Downloads

1220

Views

475

Comments

0

Submitted:

08 March 2021

Posted:

09 March 2021

You are already at the latest version

Alerts
Abstract
Great Malang region is developing rapidly with the population increase and inhabitant`s activity, like migration and urbanization. Other activities like agricultural expansion as well as an uncontrolled residential development need to be monitored to avoid any negative impact in the future. The availability of free and open-source software, spatial high-resolution satellite imagery datasets, and powerful algorithms open the possibilities to map, monitor, and predict the future trend of land use land cover (LULC) changes. However, the accuracy and precision of this model is still in doubt, especially in the Great Malang region. Research is needed to provide a foundational basis and documentation on how the changes occur, where did the changes occur, and the accuracy of the predicted model. This study tries to answer those questions using the high spatial resolution of Sentinel-2 imageries. Combination of the fuzzy algorithm, artificial neural network, and cellular automata was utilized to process the datasets. We analysed four different scenarios of simulation and the result then compared. The different number of hidden layers and iteration was used and evaluated to understand the effect of different parameters in the prediction result. The best scenario was then used to predict future land use changes. This study has successfully produced the future LULC model of Great Malang region with high accuracy level (87%). The study also found that the land use transformation from agriculture to urban built-up area is relatively low, where changes of the built-up area over three periods of analysis are below than 5%. This is due to the physical condition of Great Malang region where mountainous areas are dominated.
Keywords: 
Subject: Environmental and Earth Sciences  -   Atmospheric Science and Meteorology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated