Abstract
Cells receive external stimuli to incur structural and functional damages. On scanning acoustic microscopy (SAM), speed-of-sound (SOS), attenuation-of-sound (AOS), and thickness values are plotted on the screen to create cellular images, which are related to stiffness, viscosity, and cell size, respectively. The obtained digital data compared using statistical analysis. We aimed to investigate the effects of anticancer drugs, acidic fluids, and heat effects on the cells by using SAM. Anticancer drug cisplatin induced cancer cell apoptosis/necrosis and regeneration in culture, causing elevated SOS, reduced AOS, and thickness. During a more prolonged incubation, the SAM values fluctuated differently between the cisplatin-treated and untreated cells. The tannic and acetic acid and microwave stimuli induced SOS and AOS elevations. These stimuli altered the cell size, number, differentiation, viscosity, and stiffness, which corresponded well to the fluctuation of the SOS and AOS values after incubation. Different anticancer drugs interacted with cancer cells to induce the characteristic alterations of the SAM values. These structural and mechanical alterations induced in cells was difficult to observe on light microscopy. Cellular damages were statistically compared between different stimuli and time-lapse cellular changes were observed using a SAM analysis. SAM is a useful modality to evaluate cellular damage.