Preprint
Article

Forecasting High-Frequency Financial Time Series: An Adaptive Learning Approach With the Order Book Data

Altmetrics

Downloads

301

Views

402

Comments

0

This version is not peer-reviewed

Submitted:

05 March 2021

Posted:

09 March 2021

You are already at the latest version

Alerts
Abstract
This paper proposes a forecast-centric adaptive learning model that engages with the past studies on the order book and high-frequency data, with applications to hypothesis testing. In line with the past literature, we produce brackets of summaries of statistics from the high-frequency bid and ask data in the CSI 300 Index Futures market and aim to forecast the one-step-ahead prices. Traditional time series issues, e.g. ARIMA order selection, stationarity, together with potential financial applications are covered in the exploratory data analysis, which pave paths to the adaptive learning model. By designing and running the learning model, we found it to perform well compared to the top fixed models, and some could improve the forecasting accuracy by being more stable and resilient to non-stationarity. Applications to hypothesis testing are shown with a rolling window, and further potential applications to finance and statistics are outlined.
Keywords: 
Subject: Business, Economics and Management  -   Accounting and Taxation
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated