Preprint
Article

Deep Learning for Wave Energy Converter Modeling Using Long Short Term Memory

Altmetrics

Downloads

518

Views

589

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

11 April 2021

Posted:

13 April 2021

You are already at the latest version

Alerts
Abstract
Accurate forecasts of ocean waves energy can not only reduce costs for investment but it is also essential for management and operation of electrical power. This paper presents an innovative approach based on the Long Short Term Memory (LSTM) to predict the power generation of an economical wave energy converter named “Searaser”. The data for analyzing is provided by collecting the experimental data from another study and the exerted data from numerical simulation of searaser. The simulation is done with Flow-3D software which has high capability in analyzing the fluid solid interactions. The lack of relation between wind speed and output power in previous studies needs to be investigated in this field. Therefore, in this study the wind speed and output power are related with a LSTM method. Moreover, it can be inferred that the LSTM Network is able to predict power in terms of height more accurately and faster than the numerical solution in a field of predicting. The network output figures show a great agreement and the root mean square is 0.49 in the mean value related to the accuracy of LSTM method. Furthermore, the mathematical relation between the generated power and wave height was introduced by curve fitting of the power function to the result of LSTM method.
Keywords: 
Subject: Computer Science and Mathematics  -   Algebra and Number Theory
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated