Preprint
Article

Discrete-Impulse Energy Supply in Milk and Dairy Products Processing

Altmetrics

Downloads

255

Views

267

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

10 March 2021

Posted:

11 March 2021

You are already at the latest version

Alerts
Abstract
The basis of the discrete-impulse energy supply (DIES) concept is the efficient use of supplied energy. The references describe in detail the general principles of DIES, examine the energy and thermodynamic aspects and the main mechanisms of intensification that can be initiated on the basis of this principle. DIES mechanisms conveniently can be divided into hard and soft ones. The former should be used to stimulate hydromechanical processes, and the latter to accelerate the processes of phase heat and mass transfer, or for the purpose of intensive mixing of multicomponent media. The authors have studied the possibility of using DIES to intensify the hydromechanical processes, in particular emulsification of milk fat (homogenization of milk, preparation of spreads), processing of cream cheese masses. Objects of research were whole non-homogenized milk, fat emulsions, cream cheese mass. In order to evaluate the efficiency of milk homogenization the homogenization coefficient change was studied, which was determined by centrifugation method as the most affordable and accurate one. Emulsions were evaluated according to the degree of destabilization, resistance and dispersion of the fat phase. The rheological characteristics of cheese masses were evaluated by the effective viscosity change.
Keywords: 
Subject: Engineering  -   Automotive Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated