Preprint
Article

Production of Biodegradable Polymer From Agro-Wastes in Alcaligenes sp. and Pseudomonas sp.

Altmetrics

Downloads

375

Views

289

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

15 March 2021

Posted:

15 March 2021

You are already at the latest version

Alerts
Abstract
The present study was aimed to evaluate the suitability of agro-wastes and crude vegetable oils for the cost effective production of poly-β-hydroxybutyrate (PHB), to evaluate growth kinetics and PHB production in Alcaligenes faecalis RZS4 and Pseudomonas sp. RZS1 with these carbon substrates and to study the biodegradation of PHB accumulated by these cultures. Alcaligenes faecalis RZS4 and Pseudomonas sp. RZS1 accumulate higher amounts of PHB corn (79.90% of dry cell mass) and rice straw (66.22% of dry cell mass) medium respectively. The kinetic model suggests that the Pseudomonas sp. RZS1 follows the Monod model more closely than A. faecalis RZS4. Both the cultures degrade their own PHB extract under the influence of PHB depolymerase. Corn waste and rice straw appear as the best and cost-effective substrates for the sustainable production of PHB from Alcaligenes faecalis RZS4 and Pseudomonas sp. RZS1. The biopolymer accumulated by these organisms is biodegradable in nature. The agro-wastes and crude vegetable oils are good and low cost sources of nutrients for the growth and production of PHN and other metabolites. Their use would lower the production cost of PHN and the low cost production will reduce the sailing price of PHB based products. This would promote the large scale commercialization and popularization of PHB as ecofriendly bioplastic/biopolymer.
Keywords: 
Subject: Biology and Life Sciences  -   Biochemistry and Molecular Biology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated