Preprint
Article

Effect of Doping Cd1-xZnxS/ZnS Core/Shell Quantum Dot in Negative Dielectric Anisotropy Nematic Liquid Crystal p-methoxybenzylidene p-decylaniline

Altmetrics

Downloads

287

Views

277

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

13 March 2021

Posted:

15 March 2021

You are already at the latest version

Alerts
Abstract
We report the effect of doping Cd1-xZnxS/ZnS core/shell quantum dot (CSQDs) in nematic liquid crystal p-methoxybenzylidene p-decylaniline (MBDA) at 0.05 wt/wt%, 0.1 wt/wt%, 0.15 wt/wt%, 0.2 wt/wt%, 0.25 wt/wt% and 0.3 wt/wt% concentrations of CSQDs in MBDA. Dielectric parameters with and without bias with respect to frequency has been investigated. The change in electro - optical parameters with temperature has also been demonstrated. The increase in the mean dielectric permittivity has been found due to large dipole moment of CSQDs which impose stronger interactions with the liquid crystal molecules. The dielectric anisotropy changes sign on doping CSQDs in MBDA liquid crystal. It was concluded that the CSQDs doping noticeably increases the dielectric permittivity of nematic MBDA in the presence of electric field. The doping of CSQDs in nematic MBDA liquid crystal reduces the ion screening effect effectively. This phenomenon is attributed to the competition between the generated ionic impurities during assembling process and the ion trapping effect of the CSQDs. The rotational viscosity of nematic liquid crystal decreases with increasing concentration of the CSQDs with faster response time observed for 0.05 wt/wt% concentration. The birefringence of the doped system increases with the inclusion of CSQDs in MBDA. These results find application in the field of display devices, phase shifters, industries and projectors.
Keywords: 
Subject: Physical Sciences  -   Acoustics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated