The steady-state multiplicity of the porous, non-isothermal, catalyst pellet when two parallel and consecutive chemical reactions take place was analysed in this work. The geometry selected for the catalyst pellet is finite hollow cylinder. A numerical multigrid continuation technique with the preconditioned conjugate gradient squared as coarse grid solver was used. The continuation parameter is the dimensionless adiabatic heat rise (Prater number) for the first chemical reaction. The effect of the other governing parameters was analysed and the results are compared to those provided by the single chemical reaction.