Preprint
Hypothesis

Mechanisms of Network Interactions for Flexible Cortico-Basal Ganglia-Mediated Action Control

Altmetrics

Downloads

215

Views

368

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

17 March 2021

Posted:

18 March 2021

You are already at the latest version

Alerts
Abstract
In humans, finely tuned gamma synchronization (60-90 Hz) rapidly appears at movement onset in a motor control network involving primary motor cortex, the basals ganglia and motor thalamus. Yet the functional consequences of brief movement-related synchronization are still unclear. Distinct synchronization phenomena have also been linked to different forms of motor inhibition, including relaxing antagonist muscles, rapid movement interruption and stabilizing network dynamics for sustained contractions. Here I will introduce detailed hypotheses about how intra- and inter-site synchronization could interact with firing rate changes in different parts of the network to enable flexible action control. The here proposed cause-and-effect relationships shine a spotlight on potential key mechanisms of cortico-basal ganglia-thalamo-cortical communication. Confirming or revising these hypotheses will be critical in understanding the neuronal basis of flexible movement initiation, invigoration and inhibition. Ultimately, the study of more complex cognitive phenomena will also become more tractable once we understand the neuronal mechanisms underlying behavioural readouts.
Keywords: 
Subject: Biology and Life Sciences  -   Neuroscience and Neurology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated