Preprint
Article

Seed Morphology in Key Spanish Grapevine Cultivars

Altmetrics

Downloads

236

Views

285

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

23 March 2021

Posted:

24 March 2021

You are already at the latest version

Alerts
Abstract
Ampelography, the botanical discipline dedicated to the identification and classification of grapevine cultivars, was grounded on the description of morphological characters and more recently is based on the application of DNA polymorphisms. New methods of image analysis may help to optimize morphological approaches in ampelography. The objective of this study was the classification of representative cultivars of Vitis vinifera conserved in the Spanish collection of IMIDRA according to seed shape. Thirty eight cultivars representing the diversity of this collection were analyzed. A consensus seed silhouette was defined for each cultivar representing the geometric figure that better adjusted to their seed shape. All the cultivars tested were classified in ten morphological groups, each corresponding to a new model. The models are geometric figures defined by equations and similarity to each model is evaluated by quantification of percent of the area shared by the two figures, the seed and the model (J index). The comparison of seed images with geometric models is a rapid and convenient method to classify cultivars. A large proportion of the collection may be classified according to the new models described and the method permits to find new models according to seed shape in other cultivars.
Keywords: 
Subject: Biology and Life Sciences  -   Agricultural Science and Agronomy
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated