Preprint
Article

Delta Fractional Sturm--Liouville Problems: From Discrete to Continuous

Altmetrics

Downloads

326

Views

301

Comments

0

This version is not peer-reviewed

Submitted:

25 March 2021

Posted:

26 March 2021

You are already at the latest version

Alerts
Abstract
In this study, we consider delta fractional Sturm--Liouville (DFSL) initial value problems in the sense of delta Caputo and delta Riemann-Liouville (R--L) operators. One of the properties of delta fractional difference operators which makes it different from nabla counterpart is to shift its domain. This feature makes it more complex than the nabla fractional operator. We obtain sum representation of solutions for DFSL initial value problems with the help of $\mathcal{Z}-$ transformation. Moreover, we get analytical solutions of homogeneous DFSL problem within Riemann-Liouville (R--L) and Caputo sense, discrete Sturm--Liouville (DSL) problem, continuous fractional Sturm--Liouville (FSL) problem in the sense of R--L and Caputo operators, and continuous Sturm--Liouville (SL) differential problem. From this point of view, we compare all the solutions with each other. Consequently, we show that all results for these four eigenvalue problems are compatible with each other and approach to each other while the orders tends to one, i.e. $\Delta^{\mu }\left( \Delta x\left( t-\mu \right) \right)\cong D_{0^{+}}^{\mu }\left( x^{\prime }\left( t\right) \right)\cong \Delta^2x(n-1) \cong x^{\prime \prime }\left( t\right) =\lambda x\left( t\right),\ \mu\rightarrow1 $ . We support our results comparatively by tables and simulations in detail.
Keywords: 
Subject: Computer Science and Mathematics  -   Discrete Mathematics and Combinatorics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated