Preprint
Article

An Electrochemical System for Forming Periodic Precipitation Bands of Cu-Fe-Based Prussian Blue Analogues

Altmetrics

Downloads

206

Views

273

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

29 March 2021

Posted:

30 March 2021

You are already at the latest version

Alerts
Abstract
We propose a novel electrochemical system to form precipitation patterns of Cu-Fe-based Prussian blue analogues (Cu-Fe PBA) in agarose gels, using an applied voltage to produce reactant ions. The spatiotemporal evolution, spatial distribution, and crystallite morphologies of the precipitates were investigated by visual inspection, Fe Kα intensity distribution measurements, and optical and scanning electron microscope observations. The precipitation patterns and their evolution depended on the applied voltage. Multicolored periodic precipitation bands were stochastically formed under cyclic alternating voltage (4 V for 1 h and then 1 V for 4 h per cycle). The distances between adjacent bands were randomly distributed (0.30 ± 0.25 mm). The sizes and shapes of the crystallites generated in the gel were position-dependent. Almost cubic but fairly irregular crystallites (0.1–0.8 μm) were formed in the periodic bands, whereas definitely cube-shaped crystallites (1–3 μm) appeared close to the anode. These cube-like reddish-brown crystallites were assigned to Cu-FeII PBA. In some periodic bands, plate-like blue crystallites (assigned to Cu(OH)2) were also present. Future issues for applications of the observed periodic banding were discussed.
Keywords: 
Subject: Physical Sciences  -   Acoustics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated