Preprint
Article

Supercritical CO2 Binary Mixtures for Recompression Brayton s-CO2 Power Cycles Coupled to Solar Thermal Energy Plants

Altmetrics

Downloads

335

Views

349

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

31 March 2021

Posted:

02 April 2021

You are already at the latest version

Alerts
Abstract
In this work, an evaluation and quantification of the impact of using mixtures based on Supercritical Carbon Dioxide "s-CO2" (s-CO2/COS, s-CO2/H2S, s-CO2/NH3, s-CO2/SO2) are made as a working fluid in simple and complex recompression Brayton s-CO2 power cycles configurations that have pressure drops in their components. These cycles are coupled to a solar thermal plant with parabolic-trough collector (PTC) technology. The methodology used in the calculation performance is to establish values of the heat recuperator total conductance (UAtotal) between 5 and 25 MW/K. The main conclusion of this work is that the cycle's efficiency has improved due to s-CO2 mixtures as working fluid; this is significant compared to that obtained using the standard fluid (pure s-CO2). Furthermore, a techno-economic analysis is carried out that compares each configuration's costs using pure s-CO2 and a mixture of s-CO2/COS with a molar fraction (70/30) respectively as working fluid where relevant results are obtained. These results show that the best configuration in terms of thermal efficiency and cost is the RCC-RH for pure sCO2 with values ​​of 41.25% and 2811 $/kWe, while for the mixture sCO2/COS, the RCC-2RH configuration with values ​​of 45, 05% and 2621 $/kWe is optimal. Using the mixture costs 6.75% less than if it is used the standard fluid (s-CO2).
Keywords: 
Subject: Engineering  -   Automotive Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated