Preprint
Article

Conditional Loss of the Exocyst Component exoc5 in Retinal Pigment Epithelium (RPE) Results in RPE Dysfunction, Photo-Receptor Cell Degeneration, and Decreased Visual Function.

Altmetrics

Downloads

194

Views

275

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

06 April 2021

Posted:

07 April 2021

You are already at the latest version

Alerts
Abstract
To characterize the mechanisms by which the highly-conserved exocyst trafficking complex regulates eye physiology in zebrafish and mice, we focused on exoc5 (aka sec10), a central exocyst component. We analyzed both exoc5 zebrafish mutants and retinal pigmented epithelium (RPE)-specific Exoc5 knockout mice. Exoc5 is present in both the non-pigmented epithelium of the ciliary body and in the RPE. In this study we set out to establish an animal model to study the mechanisms underlying the ocular phenotype and to establish if loss of visual function is induced by postnatal RPE Exoc5-deficiency. Exoc5-/- zebrafish showed smaller eyes, with decreased number of melanocytes in the RPE and shorter photoreceptor outer segments. At 3.5 days post fertilization, loss of rod and cone opsins were observed in zebrafish Tg:exoc5 mutants. Mice with postnatal RPE-specific loss of Exoc5 showed retinal thinning associated with compromised visual function, and loss of visual photoreceptor pigments. This retinal phenotype in Exoc5-/- mice was present at 20-weeks, and the phenotype was more severe at 27-weeks, indicating progressive disease phenotype. We previously showed that the exocyst is necessary for photoreceptor ciliogenesis and retinal development. Here, we report that exoc5 mutant zebrafish and mice with RPE-specific genetic ablation of Exoc5 develop abnormal RPE pigmentation, resulting in retinal cell dystrophy and loss of visual pigments associated with compromised vision. As RPE cells are “downstream” of photoreceptor cells in the visual process, these data suggest exocyst-mediated retrograde communication and dependence between the RPE and photoreceptors.
Keywords: 
Subject: Biology and Life Sciences  -   Biochemistry and Molecular Biology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated