Preprint
Article

Effect of Thermal Radiation on the Conjugate Heat Transfer from a Circular Cylinder with an Internal Heat Source in Laminar Flow

Altmetrics

Downloads

294

Views

259

Comments

0

This version is not peer-reviewed

Submitted:

07 April 2021

Posted:

08 April 2021

You are already at the latest version

Alerts
Abstract
The effect of thermal radiation on the two – dimensional, steady-state, conjugate heat transfer from a circular cylinder with an internal heat source in steady laminar crossflow is investigated in this work. P0 (Rosseland) and P1 approximations were used to model the radiative transfer. The mathematical model equations were solved numerically. Qualitatively, P0 and P1 approximations show the same effect of thermal radiation on conjugate heat transfer; the increase in the radiation – conduction parameter decreases the cylinder surface temperature and increases the heat transfer rate. Quantitatively, there are significant differences between the results provided by the two approximations.
Keywords: 
Subject: Engineering  -   Automotive Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated