Preprint
Article

Large Deviations and Information theory for Sub-Critical SINR Randon Network Models

Altmetrics

Downloads

104

Views

217

Comments

0

Submitted:

11 April 2021

Posted:

13 April 2021

You are already at the latest version

Alerts
Abstract
The article obtains large deviation asymptotic for sub-critical communication networks modelled as signal-interference-noise-ratio(SINR) random networks. To achieve this, we define the empirical power measure and the empirical connectivity measure, as well as prove joint large deviation principles(LDPs) for the two empirical measures on two different scales. Using the joint LDPs, we prove an Asymptotic equipartition property(AEP) for wireless telecommunication Networks modelled as the subcritical SINR random networks. Further, we prove a Local Large deviation principle(LLDP) for the sub-critical SINR random network. From the LLDPs, we prove the large deviation principle, and a classical McMillan Theorem for the stochastic SINR model processes. Note that, the LDPs for the empirical measures of this stochastic SINR random network model were derived on spaces of measures equipped with the $\tau-$ topology, and the LLDPs were deduced in the space of SINR model process without any topological limitations. We motivate the study by describing a possible anomaly detection test for SINR random networks.
Keywords: 
Subject: Computer Science and Mathematics  -   Algebra and Number Theory
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated