Preprint
Review

Review on Deep Neural Networks Applied to Low-Frequency NILM

Altmetrics

Downloads

575

Views

382

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

14 April 2021

Posted:

15 April 2021

You are already at the latest version

Alerts
Abstract
This paper reviews non-intrusive load monitoring (NILM) approaches that employ deep neural networks to disaggregate appliances from low frequency data, i.e. data with sampling rates lower than the AC base frequency. We first review the many degrees of freedom of these approaches, what has already been done in literature, and compile the main characteristics of the reviewed publications in an extensive overview table. The second part of the paper discusses selected aspects of the literature and corresponding research gaps. In particular, we do a performance comparison with respect to reported MAE and F$_1$-scores and observe different recurring elements in the best performing approaches, namely data sampling intervals below 10\,s, a large field of view, the usage of GAN losses, multi-task learning, and post-processing. Subsequently, multiple input features, multi-task learning and related research gaps are discussed, the need for comparative studies is highlighted, and finally, missing elements for a successful deployment of NILM approaches based on deep neural networks are pointed out. We conclude the review with an outlook on possible future scenarios.
Keywords: 
Subject: Computer Science and Mathematics  -   Algebra and Number Theory
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated