Preprint
Article

An Adaptive Early Fault Detection Model of Induced Draft Fans Based on Multivariate State Estimation Technique

Altmetrics

Downloads

248

Views

267

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

16 April 2021

Posted:

19 April 2021

You are already at the latest version

Alerts
Abstract
The induced draft (ID) fan is important auxiliary equipment in the thermal power plant. It is of great significance to monitor the operation of the ID fan for safe and efficient production. In this paper, an adaptive warning model is proposed to detect early faults of ID fans. First, a non-parametric monitoring model is constructed to describe the normal operation states with the multivariate state estimation technique (MSET). Then, an early warning approach is presented to identify abnormal behaviors based on the results of the MSET model. As the performance of the MSET model is heavily influenced by the normal operation data in the historic memory matrix, an adaptive strategy is proposed by using the samples with a high data quality index (DQI) to manage the memory matrix and update the model. The proposed method is applied to a 300 MW coal-fired power plant for early fault detection, and it is compared with the model without an update. Results show that the proposed method can detect the fault earlier and more accurately.
Keywords: 
Subject: Engineering  -   Automotive Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated