With the increasingly stringent airworthiness standards, the noise generated during the rotorcraft flight is gradually attracting people’s attention. It widely operated helicopters at low altitudes because of their maneuverability. The way to reduce the noise caused by the complex airflow of the helicopter rotor system has progressively become a hot topic for researchers. Using a hybrid acoustic analysis method, this paper investigates the improvement of the noise and thrust of the helicopter’s tail rotor through the tail rotor structural parameters. For the basic model, the turbulence simulation is performed using an incompressible detached eddy simulation (DES) method, and the Lighthill acoustic analog equation is calculated using the finite element method (FEM). We verified the accuracy of the method through wind tunnel tests. We chose a series of structural parameters for sound simulation and fluid simulation calculations. The results indicate that the modified tail rotor noise reduced by 16.5 dBA and the total thrust increased by 19.9% from the prototype model. This work can enhance the duct tail rotor design to improve aerodynamic and aeroacoustic performance.
Keywords:
Subject: Engineering - Mechanical Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.