Poly(dA:dT) tracts cause nucleosome depletion in many species, e.g., at promoters and replication origins. Their intrinsic biophysical sequence properties make them stiff and unfavorable for nucleosome assembly, as probed by in vitro nucleosome reconstitution. The mere correlation between nucleosome depletion over poly(dA:dT) tracts in vitro and in vivo inspired an intrinsic nucleosome exclusion mechanism in vivo. However, we compile here published and new evidence that this correlation does not reflect mechanistic causation. 1) Nucleosome depletion over poly(dA:dT) in vivo is not universal, e.g., very weak in S. pombe. 2) The energy penalty for incorporating poly(dA:dT) tracts into nucleosomes is modest (<10%) relative to ATP hydrolysis energy abundantly invested by chromatin remodelers. 3) Nucleosome depletion over poly(dA:dT) is much stronger in vivo than in vitro if monitored without MNase and 4) actively maintained in vivo. 5) S. cerevisiae promoters evolved a biased poly(dA) versus poly(dT) distribution. 6) Nucleosome depletion over poly(dA) is directional in vivo. 7) The ATP dependent chromatin remodeler RSC preferentially and directionally displaces nucleosomes towards 5’ of poly(dA). Especially bias and directionality would not be expected for an intrinsic mechanism. Together, this argues for a mechanism where active and species-specific read out of intrinsic sequence properties, e.g., by remodelers, shapes nucleosome occupancy.
Keywords:
Subject: Biology and Life Sciences - Biochemistry and Molecular Biology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.