Abstract
Background
Hokkaido is the northernmost, least populous, and coldest of the Japanese islands. It was the first prefecture to be affected by COVID-19, while Kanagawa is home to one of the most populous areas of Japan, namely the Tokyo metro area. The Japanese government responded early during the pandemic by identifying infected patients, contact tracing, and performing PCR analysis on anyone who was suspected of having been exposed to SARS-CoV-2. The government has also been publishing information about each individual who tested positive for the virus. Both Hokkaido and Kanagawa started recording COVID-19 cases in the winter of 2020 and have detailed records of thousands of patients, thus providing an invaluable resource for the transmission and behavior of the virus.
Methods
The current study analyzed the COVID-19 registry data from the Hokkaido and Kanagawa prefectures. The Hokkaido registry contained 1,269 cases (674 (53%) females and 595 (47%) males) recorded between February 14 and July 22, 2020. The Kanagawa registry had 3,123 cases (1,346 (43%) females and 1,777 (57%) males. The final data contained a total of 4,392 cases (2,020 (46%) females and 2,372 (54%) males). By leveraging the information on viral transmission paths available in the registry data, we performed exponential random graph model (ERGM) network analysis to examine demographic and symptomological homophilies of the SARS-CoV-2 viral transmission networks.
Results
We observed age, symptomatic, and asymptomatic homophilies in both prefectures. Furthermore, those patients who contracted the virus through secondary or tertiary contacts were more likely to be asymptomatic than those who contracted it from primary infection cases. The transmission networks showed that transmission occurred significantly in healthcare settings, as well as in families, although the size of the networks was small in the latter. Most of the transmissions stopped at the primary and secondary levels and no transmission beyond quaternary was observed. We also observed a higher level of asymptomatic transmission in Kanagawa than in Hokkaido.
Conclusions
Symptom homophilies are an important component of COVID-19 and suggest that nuanced genetic differences in the virus may affect its epithelial cell type range and can thus result in the diversity of symptoms seen in individuals infected by SARS-CoV-2. Moreover, environmental variables such as temperature and humidity may also be playing an important role in the overall pathogenesis of the virus.