Preprint
Article

Forest Fire Recognition Based on Dynamic Feature Similarity of Multi-View Images

Altmetrics

Downloads

594

Views

505

Comments

1

This version is not peer-reviewed

Submitted:

13 July 2021

Posted:

13 July 2021

You are already at the latest version

Alerts
Abstract
Forest fire identification is important for forest resource protection. Effective monitoring of forest fires requires the deployment of multiple monitors with different viewpoints, while most traditional recognition models can only recognize images from a single source. By ignoring the information from images with different viewpoints, these models produce high rates of missed and false alarms. In this paper, we propose a graph neural network model based on the similarity of dynamic features of multi-view images to improve the accuracy of forest fire recognition. The input features of the nodes on the graph are converted into relational features of different gallery pairs by establishing pairs (nodes) representing different viewpoint images and gallery images. The new feature library relationship is used to update the image gallery with dynamic features in order to achieve the estimation of similarity between images and improve the image recognition rate of the model. In addition, to reduce the complexity of image pre-processing process and extract key features in images effectively, this paper also proposes a dynamic feature extraction method for fire regions based on image segment ability. By setting the threshold value of HSV color space, the fire region is segmented from the image, and the dynamic features of successive frames of the fire region are extracted. The experimental results show that, compared with the baseline method Resnet, this paper's method is more effective in identifying forest fires, and its recognition accuracy is improved by 2%. And the scheme of this paper can adapt to different forest fire scenes, with better generalization ability and anti-interference ability.
Keywords: 
Subject: Engineering  -   Automotive Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated