Preprint
Article

On the Importance of Passive Acoustic Monitoring Filters

Altmetrics

Downloads

211

Views

229

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

28 April 2021

Posted:

29 April 2021

You are already at the latest version

Alerts
Abstract
Abstract: Passive acoustic monitoring (PAM) is a non-invasive technique to supervise the wildlife. Acoustic surveillance is preferable in some situation such as in the case of marine mammals, when the animals spend most of their time underwater, making it hard to obtain their images. Machine learning is very useful for PAM, for example, to identify species based on audio recordings. But some care should be taken to evaluate the capability of a system. We define PAM-filters as the creation of the experimental protocols according to the dates and locations of the recordings, aiming to avoid the use of the same individuals, noise and recording devices in both training and test sets. A random division of a database present accuracies much higher than accuracies obtained with protocols generated with PAM-filter. Although we use the animal vocalizations, in our method we convert the audio into spectrogram images, after that, we describe the images using the texture. Those are well-known techniques for audio classification, and they have already been used for species classification. Also, we perform statistical tests to demonstrate the significant difference between accuracies generated with and without PAM-filters with several well-known classifiers. The configuration of our experimental protocols and the database were made available online.
Keywords: 
Subject: Computer Science and Mathematics  -   Algebra and Number Theory
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated