SARS-CoV-2 was empirically and computationally found to be of a specific but peculiar evolution. Shell disorder models found that the outer shell (M protein) of SARS-CoV-2 to be among the hardest in its CoV family. The hard outer shell (low M percentage of disorder (PID)) is likely to be related to the SARS-CoV-2 resistance to the antimicrobial enzymes in saliva and mucus, and be responsible for the high-level of viral shedding which has been observed clinically. Experimental studies have also shown that SARS-CoV-2 is more resilient in the environment than many other CoVs, including SARS-CoV-1. Another aspect of the shell disorder models predicts that SARS-CoV-1 is more virulent than SARS-CoV-2 because of higher inner shell disorder (N PID) that helps SARS-CoV-1 replicate faster in vital organs despite being of lesser viral loads in the saliva and mucus, unlike SARS-CoV-2. This has been reaffirmed experimentally, where higher levels (50 folds) of infectious particles were detected in the SARS-CoV-1 samples in comparison with those of SARS-CoV-2. The hard outer shell of SARS-CoV-2 has been found to be associated with burrowing animals, particularly pangolins, which are often in contact with buried feces. For these reasons, the M protein is highly conserved among close relatives of SARS-CoV-2. The phylogenetic tree using M, unlike the genome-wide one, shows that pangolin-CoVs are more closely related to SARS-CoV-2 than bat-RaTG13. Previous phylogenetic studies may have been confused by recombinations that are usually poorly handled. According to the shell disorder models based on the N PID, an attenuated COVID-19 strain is likely to have entered humans via pangolins in 2017 or before, which provides the virus enough time to adapt to humans. This could explain why the SARS-CoV-2 S protein is highly adapted to the human ACE-2. The specific but peculiar evolution has a wide range of clinical, immunological, and epidemiological implications.