Preprint
Article

Influence of Austempering Temperatures on the Microstructure and Mechanical Properties of Austempered Ductile Cast Iron

Altmetrics

Downloads

427

Views

242

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

01 May 2021

Posted:

05 May 2021

You are already at the latest version

Alerts
Abstract
The influence of the austempering temperatures on the microstructure and mechanical properties of austempered ductile cast iron (ADI) was investigated. ADI is nodular graphite cast iron, which owing to higher strength and elongation exceeds mechanical properties of conventional spheroidal graphite cast iron. Such a combination of properties is achieved by the heat treatment through austenitization, followed by austempering at different temperatures. The austenitization conditions were the same for all the samples: temperature 890°C, duration 30min, and quenching in a salt bath. The main focus of this research was on the influence of the austempering temperatures (270°C, 300°C, and 330 C) on the microstructure evolution, elongation, toughness and fatigue resistance of ADI modified by certain amount of Ni, Cu, and Mo. The Vickers and Rockwell hardness decreased from 535.7 to 405.3HV/1 (55.7 to 44.5HRC) as the austempering temperature increased. Optical images showed the formation of graphite nodules and matrix composed of ausferrite; the presence of these phases was confirmed by an XRD diffraction pattern. A fracture surface analysis revealed several types of the mechanisms: cleavage ductile, transgranular and ductile dimple fracture. The stress-controlled mechanical fatigue experiments revealed that a 330°C austempering temperature ensures the highest fatigue life of ADI.
Keywords: 
Subject: Engineering  -   Mechanical Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated