Preprint
Article

Water-Quality Data Imputation With High Percentage of Missing Values: A Machine Learning Approach

Altmetrics

Downloads

399

Views

371

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

03 May 2021

Posted:

06 May 2021

You are already at the latest version

Alerts
Abstract
The monitoring of surface-water quality followed by water-quality modeling and analysis is essential for generating effective strategies in water-resource management. However, worldwide, particularly in developing countries, water-quality studies are limited due to the lack of a complete and reliable dataset of surface-water-quality variables. In this context, several statistical and machine-learning models were assessed for imputing water-quality data at six monitoring stations located in the Santa Lucía Chico river (Uruguay), a mixed lotic and lentic river system. The challenge of this study is represented by the high percentage of missing data (between 50% and 70%) and the high temporal and spatial variability that characterizes the water-quality variables. The competing algorithms implemented belonged to both univariate and multivariate imputation methods (inverse distance weighting (IDW), Random Forest Regressor (RFR), Ridge (R), Bayesian Ridge (BR), AdaBoost (AB), Hubber Regressor (HR), Support Vector Regressor (SVR), and K-nearest neighbors Regressor (KNNR)). According to the results, more than 76% of the imputation outcomes are considered satisfactory (NSE > 0.45). The imputation performance shows better results at the monitoring stations located inside the reservoir than the ones positioned along the mainstream. IDW was the most chosen model for data imputation.
Keywords: 
Subject: Environmental and Earth Sciences  -   Atmospheric Science and Meteorology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated