Preprint
Article

Statistical Analysis and Neural Network in Detecting Steel Cord Failures in Conveyor Belts

Altmetrics

Downloads

188

Views

242

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

06 May 2021

Posted:

07 May 2021

You are already at the latest version

Alerts
Abstract
The paper presents the identification and classification of steel cord failures in the conveyor belt core based on an analysis of a two-dimensional image of magnetic field changes recorded using the Diagbelt system around scanned failures in the test belt. The obtained set of identified changes in images obtained for numerous devices parameters settings were the base for statistical analysis. It makes it possible to determine the Pearson’s linear correlation coefficient between the parameters being changed and the image of the failures. In the second stage of the research, artificial intelligence methods were applied to construct a multilayer neural network (MLP) and to teach its appropriate identification of damage. In both methods were used the same data sets, which made it possible to compare methods.
Keywords: 
Subject: Engineering  -   Automotive Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated