Preprint
Article

Exploring Effective Built Environment Factors for Evaluating Pedestrian Volume in High-density Areas: A New Finding for the CBD in Melbourne, Australia

Altmetrics

Downloads

233

Views

295

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

06 May 2021

Posted:

10 May 2021

You are already at the latest version

Alerts
Abstract
Previous studies have mostly examined how sustainable cities try to promote non-motorized travel by creating a walking-friendly environment. Such existing studies provide little research that identifies how the built environment affects pedestrian volume in high-density areas. This paper presents a methodology that combines person correlation analysis, stepwise regression, and principal component analysis for exploring the internal correlation and potential impact of built environment variables. To study this relationship, cross-sectional data in the Melbourne central business district were selected. Pearson’s correlation coefficient confirmed that visible green index and intersection density were not correlated to pedestrian volume. The results from stepwise regression showed that land-use mix degree, public transit stop density, and employment density could be associated with pedestrian volume. Moreover, two principal components were extracted by factor analysis. The result of the first component yielded an internal correlation where land-use and amenities components were positively associated with the pedestrian volume. Component 2 presents parking facilities density, which negatively relates to the pedestrian volume. Based on the results, existing street problems and policy recommendations were put forward to suggest diversifying community service within walking distance, improving the service level of the public transit system, and restricting on-street parking in Melbourne.
Keywords: 
Subject: Business, Economics and Management  -   Accounting and Taxation
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated