Preprint
Article

Deep Learning and Conventional Machine Learning for Image-Based in-Situ Fault Detection During Laser Welding: A Comparative Study

Altmetrics

Downloads

561

Views

566

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

12 May 2021

Posted:

12 May 2021

You are already at the latest version

Alerts
Abstract
An effective process monitoring strategy is a requirement for meeting the challenges posed by increasingly complex products and manufacturing processes. To address these needs, this study investigates a comprehensive scheme based on classical machine learning methods, deep learning algorithms, and feature extraction and selection techniques. In a first step, a novel deep learning architecture based on convolutional neural networks (CNN) and gated recurrent units (GRU) is introduced to predict the local weld quality based on mid-wave infrared (MWIR) and near-infrared (NIR) image data. The developed technology is used to discover critical welding defects including lack of fusion (false friends), sagging and lack of penetration, and geometric deviations of the weld seam. Additional work is conducted to investigate the significance of various geometrical, statistical, and spatio-temporal features extracted from the keyhole and weld pool regions. Furthermore, the performance of the proposed deep learning architecture is compared to that of classical supervised machine learning algorithms, such as multi-layer perceptron (MLP), logistic regression (LogReg), support vector machines (SVM), decision trees (DT), random forest (RF) and k-Nearest Neighbors (kNN). Optimal hyperparameters for each algorithm are determined by an extensive grid search. Ultimately, the three best classification models are combined into an ensemble classifier that yields the highest detection rates and achieves the most robust estimation of welding defects among all classifiers studied, which is validated on previously unknown welding trials.
Keywords: 
Subject: Engineering  -   Automotive Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated