Preprint
Article

Forms and Dynamics of Soil Potassium in Acid Soil in the Wolaita Zone of Southern Ethiopia

Altmetrics

Downloads

331

Views

293

Comments

0

This version is not peer-reviewed

Submitted:

07 May 2021

Posted:

13 May 2021

You are already at the latest version

Alerts
Abstract
Quantity-intensity characteristics are among conventional approaches for studying potassium dynamics and its availability; this was assessed to determine availability in four districts: namely, Sodo Zuria, Damot Gale, Damot Sore, and Boloso Sore at three different land use type viz., enset-coffee, crop land, and grazing land. There was water soluble, ammonium acetate, nitric acid extractable potassium, exchangeable potassium, and non-exchangeable potassium studied in soil samples, which were collected from 0-20 cm depth of each land type. The study revealed that water soluble and ammonium acetate extractable potassium concentrations ranged from 0.04 to 0.42 cmolKg-1 soils enset-coffee and grazing land use types, respectively. The study showed that exchangeable potassium constituted the highest proportion of available potassium, while the proportion of water soluble potassium was found to be the lowest. In this study, non-exchangeable potassium concentrations varied from 0.10 to 0.04cmolKg-1soils for enset-coffee, and crop and grazing land use type. Furthermore, available potassium and exchangeable potassium concentrations were positively correlated with OC(r=0.95***), cation exchange capacity, and sand and clay(r=0.98***). In addition, the K dynamics as impacted by land use types found that the highest change in exchangeable potassium (0.31cmolkg-1soils) and potential buffering capacity (1.79cmolkg-1soils) were noted in crop land use types, whereas the lowest change(1.26cmolkg-1 soils) was observed in the enset-coffee system, The varying properties, potassium status, dynamic and land use type of soils identified in the study areas provided adequate information to design soil potassium management options and further research about the soil in each site. Therefore, application of site specific soil fertility management practices and research can improve soil potassium status and quantity intensity parameters to sustain crop productive soils.
Keywords: 
Subject: Biology and Life Sciences  -   Biochemistry and Molecular Biology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated