Preprint
Article

The Steelmaking Process Parameter Optimization with a Surrogate Model Based on Convolutional Neural Networks and the Firefly Algorithm

Altmetrics

Downloads

239

Views

291

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

12 May 2021

Posted:

13 May 2021

You are already at the latest version

Alerts
Abstract
High-strength low-alloy steels (HSLAs) are widely used in the structural body components of many domestic motor vehicles owing to their better mechanical properties and greater resistance. The real production process of HSLA steelmaking can be regarded as a model that builds on the relationship between process parameters and product quality attributes. A surrogate modeling method is used, and the resulting production process model can be applied to predict the optimal manufacturing process parameters. We used different methods in this paper to build such a surrogate model, including linear regression, random forests, support vector regression, multilayer perception, and a simplified VGG model. We then applied three bio-inspired search algorithms, namely particle swarm optimization, the artificial bee colony algorithm, and the firefly algorithm, to search for the optimal controllable manufacturing process parameters. Through experiments on 9,000 test samples used for building the surrogate model, and 299 test samples for making the optimal process parameter selection, we found that the combination of a simplified VGG model and the firefly algorithm was the most successful at reaching a success rate of 100%—in other words, when the product quality attributes of all test samples satisfy the mechanical requirements of the end products.
Keywords: 
Subject: Engineering  -   Automotive Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated