Preprint
Review

Use of Nanomaterials for the Immobilization of Industrially Important Enzymes

Altmetrics

Downloads

686

Views

368

Comments

0

This version is not peer-reviewed

Submitted:

13 May 2021

Posted:

14 May 2021

You are already at the latest version

Alerts
Abstract
Immobilization enables enzymes to be held in place so that they can be easily separated from the product when needed and can be used again. Conventional methods of immobilization include adsorption, encapsulation, entrapment, cross linking and covalent binding. However, conventional methods have several drawbacks including reduced stability, loss of biomolecules, less enzyme loading or activity and limited diffusion. The aim of this study is the evaluation of importance of nanomaterials for the immobilization of industrially important enzymes. Nano materials are now in trend for the immobilization of different enzymes due to their physiochemical properties. Gold nanoparticles, silver nanoparticles, nano diamonds, graphene, carbon nanotubes and others are used for immobilization. Among covalent and non-covalent immobilization of enzymes involving both single and multiwalled carbon nanotubes, non-covalent immobilization with functionalized carbon nanotubes is superior. Therefore, enzymes immobilized with nanomaterials possess greater stability, retention of catalytic activity and reusability of enzymes
Keywords: 
Subject: Biology and Life Sciences  -   Biochemistry and Molecular Biology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated