One of the biggest challenges in modern physics is how to unify gravity with quantum theory. There is an absence of a complete quantum theory of gravity, and conventionally it is thought that the effects of quantum gravity occur only at high energies (Planck scale). Here we suggest that certain novel quantum effects of gravity can become significant even at lower energies and could be tested at laboratory scales. We also suggest a few indirect effects of dark energy that can show up at laboratory scales. Using these ideas, we set observational constraints on radio recombination lines of the Rydberg atoms. We further suggest that high-precision measurements of Casimir effects for smaller plate separation could also show some manifestations of the presence of dark energy.
Keywords:
Subject: Physical Sciences - Acoustics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.