Preprint
Article

Four-Layer ConvNet to Facial Emotion Recognition with Minimal Epochs and the Significance of Data Diversity

Altmetrics

Downloads

369

Views

342

Comments

0

Submitted:

16 May 2021

Posted:

18 May 2021

You are already at the latest version

Alerts
Abstract
Emotion recognition defined as identifying human emotion and is directly related to different fields such as human-computer interfaces, human emotional processing, irrational analysis, medical diagnostics, data-driven animation, human-robot communi- cation and many more. The purpose of this study is to propose a new facial emotional recognition model using convolutional neural network. Our proposed model, “ConvNet”, detects seven specific emotions from image data including anger, disgust, fear, happiness, neutrality, sadness, and surprise. This research focuses on the model’s training accuracy in a short number of epoch which the authors can develop a real-time schema that can easily fit the model and sense emotions. Furthermore, this work focuses on the mental or emotional stuff of a man or woman using the behavioral aspects. To complete the training of the CNN network model, we use the FER2013 databases, and we test the system’s success by identifying facial expressions in the real-time. ConvNet consists of four layers of convolution together with two fully connected layers. The experimental results show that the ConvNet is able to achieve 96% training accuracy which is much better than current existing models. ConvNet also achieved validation accuracy of 65% to 70% (considering different datasets used for experiments), resulting in a higher classification accuracy compared to other existing models. We also made all the materials publicly accessible for the research community at: https://github.com/Tanoy004/Emotion-recognition-through-CNN.
Keywords: 
Subject: Computer Science and Mathematics  -   Algebra and Number Theory
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated